143 research outputs found

    Reappraising Abstract Paintings after Exposure to Background Information

    Get PDF
    Can knowledge help viewers when they appreciate an artwork? Experts’ judgments of the aesthetic value of a painting often differ from the estimates of naïve viewers, and this phenomenon is especially pronounced in the aesthetic judgment of abstract paintings. We compared the changes in aesthetic judgments of naïve viewers while they were progressively exposed to five pieces of background information. The participants were asked to report their aesthetic judgments of a given painting after each piece of information was presented. We found that commentaries by the artist and a critic significantly increased the subjective aesthetic ratings. Does knowledge enable experts to attend to the visual features in a painting and to link it to the evaluative conventions, thus potentially causing different aesthetic judgments? To investigate whether a specific pattern of attention is essential for the knowledge-based appreciation, we tracked the eye movements of subjects while viewing a painting with a commentary by the artist and with a commentary by a critic. We observed that critics’ commentaries directed the viewers’ attention to the visual components that were highly relevant to the presented commentary. However, attention to specific features of a painting was not necessary for increasing the subjective aesthetic judgment when the artists’ commentary was presented. Our results suggest that at least two different cognitive mechanisms may be involved in knowledge-guided aesthetic judgments while viewers reappraise a painting

    Spontaneous Eyeblinks Are Correlated with Responses during the Stroop Task

    Get PDF
    The timing and frequency of spontaneous eyeblinking is thought to be influenced by ongoing internal cognitive or neurophysiological processes, but how precisely these processes influence the dynamics of eyeblinking is still unclear. This study aimed to better understand the functional role of eyeblinking during cognitive processes by investigating the temporal pattern of eyeblinks during the performance of attentional tasks. The timing of spontaneous eyeblinks was recorded from 28 healthy subjects during the performance of both visual and auditory versions of the Stroop task, and the temporal distributions of eyeblinks were estimated in relation to the timing of stimulus presentation and vocal response during the tasks. We found that the spontaneous eyeblink rate increased during Stroop task performance compared with the resting rate. Importantly, the subjects (17/28 during the visual Stroop, 20/28 during the auditory Stroop) were more likely to blink before a vocal response in both tasks (150–250 msec) and the remaining subjects were more likely to blink soon after the vocal response (200–300 msec), regardless of the stimulus type (congruent or incongruent) or task difficulty. These findings show that spontaneous eyeblinks are closely associated with responses during the performance of the Stroop task on a short time scale and suggest that spontaneous eyeblinks likely signal a shift in the internal cognitive or attentional state of the subjects

    Nucleus accumbens shell moderates preference bias during voluntary choice behavior

    Get PDF
    The nucleus accumbens (NAc) shell lies anatomically at a critical intersection within the brain's reward system circuitry, however, its role in voluntary choice behavior remains unclear. Rats with electrolytic lesions in the NAc shell were tested in a novel foraging paradigm. Over a continuous two-week period they freely chose among four nutritionally identical but differently flavored food pellets by pressing corresponding levers. We examined the lesion's effects on three behavioral dynamics components: motivation (when to eat), preference bias (what to choose) and persistence (how long to repeat the same choice). The lesion led to a marked increase in the preference bias: i.e., increased selection of the most-preferred choice option, and decreased selection of the others. We found no effects on any other behavioral measures, suggesting no effect on motivation or choice persistence. The results implicate the NAc shell in moderating the instrumental valuation process by inhibiting excessive bias toward preferred choice options.11Ysciessciscopu

    Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach

    Get PDF
    The human brain's remarkable motor adaptability stems from the formation of context representations and the use of a common context representation (e.g., an invariant task structure across task contexts) derived from structural learning. However, direct evaluation of context representations and structural learning in sensorimotor tasks remains limited. This study aimed to rigorously distinguish neural representations of visual, movement, and context levels crucial for multi-context visuomotor adaptation and investigate the association between representation commonality across task contexts and adaptation performance using multivariate decoding analysis with fMRI data. Here, we focused on three distinct task contexts, two of which share a rotation structure (i.e., visuomotor rotation contexts with −90° and +90° rotations, in which the mouse cursor's movement was rotated 90 degrees counterclockwise and clockwise relative to the hand-movement direction, respectively) and the remaining one does not (i.e., mirror-reversal context where the horizontal movement of the computer mouse was inverted). This study found that visual representations (i.e., visual direction) were decoded in the occipital area, while movement representations (i.e., hand-movement direction) were decoded across various visuomotor-related regions. These findings are consistent with prior research and the widely recognized roles of those areas. Task-context representations (i.e., either −90° rotation, +90° rotation, or mirror-reversal) were also distinguishable in various brain regions. Notably, these regions largely overlapped with those encoding visual and movement representations. This overlap suggests a potential intricate dependency of encoding visual and movement directions on the context information. Moreover, we discovered that higher task performance is associated with task-context representation commonality, as evidenced by negative correlations between task performance and task-context-decoding accuracy in various brain regions, potentially supporting structural learning. Importantly, despite limited similarities between tasks (e.g., rotation and mirror-reversal contexts), such association was still observed, suggesting an efficient mechanism in the brain that extracts commonalities from different task contexts (such as visuomotor rotations or mirror-reversal) at multiple structural levels, from high-level abstractions to lower-level details. In summary, while illuminating the intricate interplay between visuomotor processing and context information, our study highlights the efficiency of learning mechanisms, thereby paving the way for future exploration of the brain's versatile motor ability

    Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?

    Get PDF
    Medical studies have shown that EEG of Alzheimer's disease (AD) patients is “slower” (i.e., contains more low-frequency power) and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related. Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1) EEG of predementia patients (a.k.a. Mild Cognitive Impairment; MCI) and control subjects; (2) EEG of mild AD patients and control subjects. The two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When combined with two synchrony measures (Granger causality and stochastic event synchrony), classification rates of 83% (MCI) and 98% (MiAD) are obtained. By including the compression ratios as features, slightly better classification rates are obtained than with relative power and synchrony measures alone

    Temporal Changes in Functional Magnetic Resonance Imaging Activation of Heterosexual Couples for Visual Stimuli of Loved Partners

    Get PDF
    ObjectiveaaPrevious neuroimaging studies on romantic love have focused on determining how the visual stimuli that serve as a representation of loved ones induce the neural activation patterns of romantic love. The purpose of this study was to investigate the temporal changes in romantic love over a period of 6 months and their correlated neurophysiological changes. MethodsaaFive heterosexual couples (n=10, mean age 21.1±1.97) who started dating not less than 100 days previously were recruited to measure their blood oxygen level dependent (BOLD) signals using functional magnetic resonance imaging (fMRI) while showing them pictures of their loved ones and their previously identified, opposite-sex friends. Subsequently, the subjects were scanned under the same experimental conditions to assess possible changes in their brain activities after 180 days. ResultsaaWe found that their Passionate Love Score (PLS) values (M: 118.6±9.1, F: 120.2 ±7.0) were significantly reduced after 6 months (M: 110.8±4.0, F: 106.2±3.0). Furthermore, significantly increased activations were found in the cingulate gyri, inferior frontal gyri, supramarginal gyri, etc., after 6 months, whereas the head and tail of the right caudate nucleus were deactivated, which is indicative of the inhibition of expression and sensory neglect. ConclusionaaThese findings suggest that dynamic neural processes in the cortical-subcortical regions are involved in temporal changes in romantic love
    corecore